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Abstract: In the 27 km circumference Large Hadron Collider, the temperature of more than
1600 main superconducting magnets is stabilized below 2 K by the Superfluid Helium Cryogenic
Circuit. The key component of the circuit’s Standard Cell is an over 100 m long bayonet
heat exchanger with two phase flow of superfluid helium, He II, that is integrated into the
magnets submerged in a static bath of He II. The magnets operate under constraints, at variable
conditions and their temperature dynamics is highly nonlinear, exhibiting variable dead times
of response. We present a simulation study on the application of Nonlinear Model Predictive
Control for the temperature stabilization. The controller is based on a simplified, first principles
model of the circuit and C/GMRES online optimization algorithm. The good performance with
small computational cost of the C/GMRES and real-time feasibility of NMPC are highlighted.
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1. INTRODUCTION

The Large Hadron Collider (LHC) at the European Or-
ganization for Nuclear Research (CERN) is the world’s
highest energy particle accelerator and collider. In the
27 km circumference LHC, more than 1600 NbTi supercon-
ducting magnets produce the very strong magnetic fields
used for guiding and focusing of particles being accelerated
(Brüning et al. (2004)). Superfluid phase of helium 4,
called He II, is used to cool and thermally stabilize the high
performance magnets operated at temperatures below 2 K,
enabling their very compact design. Cryogenic circuits
using He II can be found in other large scale projects using
superconducting magnets (Tavian (2000)).

1.1 Superfluid Helium Cryogenic Circuit

The Superfluid Helium Cryogenic Circuit (SHCC), also
known as the 1.9 K Cooling Loop, is used to cool down and
stabilize the temperature of the LHC main superconduct-
ing magnets. It was developed at CERN based on the novel
concept of He II bayonet heat exchanger (BHX)(Lebrun
et al. (1997)). In each 106.9 m long Standard Cell (SC) of
the SHCC, one BHX is integrated into eight magnets and
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Fig. 1. Standard Cell of the Superfluid Helium Cryogenic
Circuit at the LHC. The key circuit components are:
bayonet heat exchanger (BHX), helium bath (HB),
feeding pipe (FP), control valve (CV), subcooling
heat exchanger (HX) and phase separator (PS). The
instrumentation consists of thermometers (T), electric
heaters (Y), pressure (P) and level (L) sensors.

the assembly is submerged in a common, static, pressur-
ized He II Bath (HB), see Fig. 1. The over 100 m long BHX
with inner two phase flow of saturated helium at very low
pressure (VLP) can be regarded as quasi-isothermal heat
sink and provides cooling to the magnets. The cooling
power is proportional to helium mass flow rate that is
controlled by a control valve (CV). A Phase Separator
(PS) is located at the BHX outlet in order to accumulate
helium in case of BHX overflow, to assure pure vapor flow



into the VLP Line B of the Cryogenic Distribution Line
(QRL). Every two or three neighboring SCs, which are
hydraulically connected (share a common HB), compose a
Sub-Sector of the SHCC. 27 SCs are distributed over each
of the eight, 3.3 km long sectors of the LHC (Gubello et al.
(2006)). Helium is supplied to the SCs from a compressor
station located at the sector extremity via the QRL.

The nominal operational magnet temperature is 1.9 K
and the maximal temperature is constrained because the
thermal conductivity of He II in the HB 1 peaks at
T = 1.94 K and vanishes at lambda (phase) transition
temperature Tλ ≈ 2.17 K (CRYODATA INC. (1999),
Srinivasan and Hofmann (1985)). Other constraints are
associated with maximal He II level in the PS, the CV
capacity and the sum of coolant mass flow rates over 27
SCs in a sector and its rate of change.

The dynamics between the CV position, the single ma-
nipulated variable used 2 , and the controlled, and the
measured, magnet temperatures exhibit strong nonlinear-
ities. These are mainly related to: equal percentage CV
characteristics, counter-flow heat transfer in He II, BHX
cooling power distribution and physical properties of He II
(heat capacity and superfluid heat conductivity). The sig-
nificant SC length causes dead time of response, which
varies strongly due to the presence of the nonlinearities.
Moreover, SCs in a Sub-Sector are very strongly thermally
coupled through heat flows in He II.

1.2 PI and LQ control for the SHCC

Currently the maximal temperature of LHC superconduct-
ing magnets is stablized separately over each SC using
a Proportional Integral (PI) controller. Due to the non-
linearities and the variable dead times of response, the
PI must be tuned in a conservative manner in order to
obtain satisfactory performance at various setpoints and
heat loads magnitudes. In order to assure enough evap-
oration rate in the BHX to avoid overflow, the optimal
setpoint Tsp,0 is adjusted with respect to the saturation
temperature measured at the compressor station Ts,CCS
keeping minimum temperature margin ∆Tsp = 0.08 K

Tsp = max(Tsp,0, Ts,CCS + ∆Tsp). (1)

The margin corresponds to the worst case pressure drop
between the compressor station and a SC. Its relatively
high value reduces the safety margin to the maximal
temperature in case of degradation of VLP.

The PI control performance has been simulated using
the first principles, distributed parameter model of the
SHCC, see Fig. 2. In the simulation, the PI is tuned
more aggressively than in the LHC and system input
linearization has been applied to compensate for the equal-
percentage characteristics of the CV. A smaller value
∆Tsp = 0.020 K has been successfully used assuming
that the saturation temperature at a particular SC Ts,SC
is known. The performance changes considerably as a
function of the heat loads ql and the Ts,SC . At the low
Ts,SC , during first 7 h of the simulation, the closed loop
dynamics of maximal magnets temperature in each SC are

1 at pressure p = 1.3 bar
2 The electric heaters installed in most of the magnets are not
intended to be used for temperature stabilization

Fig. 2. Simulated performance of the PI controller.

Fig. 3. Simulated performance of the LQ controller.

different due to the thermal coupling that drives one of
the CV coolant mass flow rates WCV close to zero and
thus, the corresponding BHX is not used. This effect is
observed during LHC operation. The control performance
is slightly better as the saturation temperature approaches
the magnet temperatures.

The performance of Linear Quadratic (LQ) control applied
to the SHCC has been simulated, see Fig. 3. The controller
gain has been calculated based on a simplified version



of the SHCC model, linearized at Ts,SC = 1.895 K,
corresponding to ∆Tsp = 0.005 K that is much smaller
than used in the PI. If Ts,SC > 1.895 K, the steady state
HB temperature distribution is shifted in order to keep the
∆Tsp. The LQ performance is excellent at high Ts,SC and
is strongly degraded at lower values due to the coupling
and varying steady state temperature distribution.

1.3 Model Predictive Control for the SHCC

Flaemster (2000) has developed a first principles model of
the lumped magnet temperature dynamics at the 42.5 m
long String 1 with distributed He II mass in the BHX.
Then, linear Model Predictive Controllers (MPC) have
been developed for versions of the SHCC used in the
LHC prototypes String 1 and String 2 (Flaemster (2000);
Blanco (2001); Gomes et al. (2004)). Also, a simplified,
first principles model of lumped magnets temperature
dynamics with non-distributed He II mass in the BHX
has been developed for the 30 m long Inner Triplet Heat
Exchanger Test Unit (IT-HXTU). Based on the simplified
model, Nonlinear MPC (NMPC) for the SHCC at the IT-
HXTU has been developed and successfully commissioned.
In the NMPC, Sequential Quadratic Programming (SQP)
has been applied to minimize a cost function, evaluated
via simulation of the model (Blanco et al. (2009)). This
NMPC was then applied to the SHCC at the 106.9 m long
full scale LHC prototype String 2 Phase 3 showing a non
acceptable degraded performance due to the dynamics of
this circuit that was different from that at the IT-HXTU.

Subsequently, first principles, distributed parameter, mod-
els of the magnets temperature dynamics at the full scale
prototype (Noga (2007); Noga and de Prada (2008)) and
at the LHC (Noga et al. (2010)) have been developed.
Based on the simplified version of the model and Contin-
uation/Generalized Minimum Residual (C/GMRES) al-
gorithm, application of NMPC to the Sub-Sector of the
SHCC at the LHC has been studied. The NMPC has the
potential to cope with the nonlinear system dynamics and
the couplings between SCs respecting constraints related
to the PS overflow, the maximal magnet temperature
and the CV capacity. Real time feasibility of a simplified
NMPC setup has been shown (Noga et al. (2010)).

In this paper, the simulation study on the application of
NMPC to the LHC magnets temperature stabilization in
a wide range of BHX saturation temperatures, based on
the BHX overflow prediction, is presented. This section in-
troduced the SHCC and the motivation for the NMPC de-
velopment. Next, the simplified model and the C/GMRES
algorithm are briefly reviewed. Then, setup of the NMPC
is described and its performance is compared against that
of PI controller with plant input linearization. Finally,
the small computational cost of C/GMRES method and
resulting real-time feasibility are highlighted.

2. SIMPLIFIED SHCC MODEL

The simplified model is used in the online optimization of
the control action for the NMPC. It is a first principles,
distributed parameter model, optimized for low computa-
tional cost by:

• capturing a small number of the most significant
aspects of the nonlinear process dynamics,

• extensively using approximations of continuous and
smooth functions that allow the explicit evaluation of
Jacobians needed during the optimization,

• using helium mass flow into the BHX as model
input (instead of CV position), and the BHX helium
overflow as output (instead of PS He level),

• reducing the number of spatial discretization steps to
five per SC

The model is valid at HB temperatures below Tλ. The
temperature dynamics of the superconducting magnets is
equivalent to that of the HB. It is calculated based on an
energy conservation principle applied to the HB, which
in 1D is a single PDE. By spatial discretization using
finite volume approach, the PDE is transformed into a
set of ODEs describing the average temperature dynamics
in each of Nx finite volumes

dTm,i(t)

dt
= c−1v (Tm,i)

L

M

∆qi(t)

∆x
, i = 1...Nx, (2)

where L, M correspond to the length and mass of SC and
∆x = L/Nx is the discretization interval. The inverse of
He II specific heat capacity is approximated as c−1v (Tm) =
10−4

(
6.22 dT 2

m − 7.257 dTm + 2.556
)
, with dTm = Tm −

1.9 K. The heat balance over a finite volume i

∆qi(t) = ∆ql,i −∆qc,i −∆qh,i (3)

involves sums of heat loads ∆ql,i and cooling power ∆qc,i
over the interval (i− 1) ∆x < x < i ∆x and the difference
between heat transfers in the He II at its extremities
∆qh,i = qh,i+1/2 − qh,i−1/2.

The total heat load into the HB ql is a perturbation to the
system assumed to be equally distributed, thus

∆ql,i = ql
∆x

L
. (4)

The heat transfer in the superfluid is highly nonlinear
as dT/dx = f(q3s). This nonlinearity introduces stiffness
in the set of ODEs, which must be limited by using the
modified formula (Noga et al. (2010))

qh,i+1/2 =−Am F
1
3 (Tm,i+1/2) ∆Tm,i+1/2/∆x

×
((

2 ∆dTm/dx

)2
+
(
∆Tm,i+1/2/∆x

)2)− 1
3

(5)

in order to enable fast time integration. The coefficient
∆dTm/dx controls the tradeoff between the fastest mode
time constant and the approximation error. The estimated
cross-section area for heat transfer in the HB Am =
0.0123 m2. The superfluid thermal conductivity function
F (T ) is approximated around its maximum as F 1/3 =
2.5 × 104. In the finite volume scheme, the temperature
gradient ∆Tm,i+1/2/∆x = (Tm,i+1 − Tm,i)/∆x, and the
temperature at the finite volume extremity Tm,i+1/2 =
(Tm,i + Tm,i+1)/2. If the extremity corresponds to that of
a HB equipped with a plug, the heat transfer qs,i+1/2 = 0.

The BHX is discretized in the same manner as the HB.
The BHX cooling power density over a finite volume is
a function of temperatures of magnets and saturation of
He II in the BHX Ts, BHX inclination dy/dx and He II
mass flow rate in the BHX Ws,i−1/2:



dqc,i
dx

(x) =

 94.89 (Tm,i − Ts) (dy/dx)−0.103

×W 0.1803
s,i−1/2 T

3
s if Tm,i > Ts

0 otherwise.
(6)

The saturation temperature Ts = Ts,SC is a model input,
corresponding to a non-measured perturbation. Another
input is the manipulated He II mass flow rate at the BHX
inlet Ws(0).

The cooling power over a control volume is calculated
respecting the fact that He II mass flow rate in the BHX
can be only non-negative:

∆qc,i = (Ws,i−1/2 −Ws,i+1/2) ∆H , (7)

with Ws,i+1/2 = max(0, Ws,i−1/2 − (dqc,i/dx) ∆x/∆H).

∆H = 23.4 103 J/kg is the He latent heat of evaporation.

The non-negative function and that in Eq. (6) are not
smooth. In order to enable explicit Jacobian calculation in
the NMPC, the smooth approximation is used

max(x, 0) ≈ f(x) := 0.5
(
x+

(
x2 + 4 a2

) 1
2 − x 1

2

)
(8)

with parameter a to control the tradeoff between precision
and the maximal value of df/dx.

3. NMPC USING C/GMRES METHOD

The control engineering notation is used in this section:
x(t) ∈ Rn is the state vector and u(t) ∈ Rmu is the input
vector of a general nonlinear system.

In NMPC, also known as Receding Horizon Control
(RHC), an open loop optimal control problem is solved
over the future time horizon taken from the current time
t to T ahead:

minimize J = φ(x(t+ T )) +

∫ t+T

t

L(x(t′), u(t′)) dt′, (9)

subject to equality constraints

ẋ = f(x(t), u(t)), C(x(t), u(t)) = 0 (10)

corresponding to system dynamics and an arbitrary mc

dimensional vector-valued function, respectively. Inequal-
ity constraints are transformed to equality constraints by
introducing dummy variables. Current state x(t) is known.
The problem is reformulated using Lagrange multipliers
λ (t) and µ (t) as

minimize J̄ = φ+

∫ t+T

t

L+λT (f − ẋ) +µT C dt′. (11)

Feedback control is realized by applying only the initial
part of the optimized input trajectory and continuously
repeating the optimization using current measurements
and receding the time horizon as the time passes.

3.1 Necessary optimality condition

In order to perform the minimization numerically, u(t) and
µ(t) are parameterized using N discrete inputs u∗i (t) and
Lagrange multipliers µ∗i (t)

u(t) =

N−1∑
i=0

σi(t) u
∗
i (t) , µ(t) =

N−1∑
i=0

σi(t) µ
∗
i (t) (12)

with basis window functions:

σi (t) =

{
1 if ti ≤ t′ < ti+1

0 otherwise.
(13)

The continuous approach with parametrization (Noga
et al. (2010)) allows separation of control horizon dis-
cretization grid ti, i = 1..N from the length of the
state/costate integration step. This is crucial in case of
stiff systems that need a very short integration step. In
contrast, they both coincide in a discrete approach (Oht-
suka (2004)).

The necessary condition for an extremum of J̄ are: the
constraints (10), the costate dynamics

λ̇ = −HT
x (x, u, λ, µ), λ (t+ T ) = φTx (x(t+ T )), (14)

with Hamiltonian H = L+λT f+µTC, and a (mu +mc)N
dimensional nonlinear equation (Bryson and Ho (1975);
Ohtsuka (2004); Noga et al. (2010)),

F (U(t), x(t), t) = 0, (15)

F := [Hu,0 C
T
0 · · · Hu,N−1 C

T
N−1]T , (16)

U(t) := [u∗T0 µ∗T0 · · · u∗TN−1 µ∗TN−1]T , (17)

Hu,i :=

∫ ti+1

ti

Hu dt′, Ci :=

∫ ti+1

ti

C dt′. (18)

For a given sequence of u∗i (t) and µ∗i (t), ẋ is integrated
over the finite horizon t < t′ < t + T , starting from x(t).

Then λ̇ is integrated backwards from t + T back to t.
Finally, Hu,i and Ci are evaluated and assembled into the
residuum of the necessary optimality condition F .

3.2 C/GMRES method

The C/GMRES algorithm (Ohtsuka (2004)) exploits the
fact that the nonlinear equation F (U(t), x(t), t) = 0 is
solved continuously and its solution, the optimal input
trajectory U(t), is expected to change slowly over time
as the state of the controlled system evolves and the
control horizon moves. C/GMRES traces the time-varying
solution without any iterative searches. Note that F is
identically zero if the following conditions hold:

dF (U(t), x(t), t)/dt=−ζ F (U(t), x(t), t), (19)

F (U(0), x(0), 0) = 0, (20)

where ζ is a positive constant to stabilize F = 0 against
numerical errors and unmodeled disturbances. The condi-
tion is rewritten as linear equation for U̇(t)

FU U̇ = −Fx ẋ− Ft − ζ F (21)

that is solved efficiently by a linear solver GMRES (Kelley
(1995)) using matrix-vector multiplications. The multipli-

cation FU U̇ is approximated using finite differences, thus
skipping explicit calculation of the Jacobian FU . Finally,
the solution U(t) is traced by integrating U̇(t).

3.3 Optimal control setup

The goal of the control action is to stabilize the maximal
magnet temperature over the assembly of two intercon-
nected SCs, at prescribed level max x(t) = xsp. This
objective is addressed using an asymmetric quadratic cost



Fig. 4. Asymmetric cost function.

function that penalizes positive deviation from the set-
point much stronger then negative one:

fqa((x)i, r, a) =
[((x)2i + r2)

1
2 + a(x)i]

2 − 2 a r(x)i − r2

(1 + a)2
,

(22)
for each element (x)i with tuning parameters r and a,
see Fig. 4. Moreover, quadratic weights are assigned to
the manipulated variables u(t) and the BHX overflow
mass flow rates Ws(L). In order to obtain a well posed
optimization problem, a linear weight is put on the dummy
input ud(t) (Seguchi and Ohtsuka (2003)). Thus, the
performance index:

φ= 0

L= 0.2

10∑
i=1

fqa ((x)i − xsp, 0.001, 0.999)

+ 10

2∑
i=1

(ui − u0)T (ui − u0)− 2 10−4
2∑
i=1

ud,i

+ 103
2∑
i=1

Ws,i(L)T Ws,i(L). (23)

The setpoint xsp is the same for interconnected cells. The
steady state helium flow u0 = ql,SC,est/∆H , with the
estimated heat load per SC ql,SC,est. Pre-multiplying the
performance index by a constant has a strong influence
on the C/GMRES performance. Apparently, this scaling
provides preconditioning to the linear equation (21).

In the study we directly address only the constraint on CV
capacity: 0 < u(t) < umax with the maximal mass flow
rate umax = 5 g/s smaller than the actual valve capacity
in order to limit perturbations to the compressors. This
inequality constraint is transformed to equality with a
dummy input variable ud:

(2 u− umax)
2

+ u2d − u2max = 0. (24)

The maximum PS He level constraint is addressed indi-
rectly by minimizing the BHX overflow. The maximum
HB temperature constraint is far from typical operational
conditions, thus has been neglected.

3.4 NMPC simulation

The NMPC controller is implemented as a simulation
independent C function based on the AutoGenU: An Au-
tomatic Code Generation System for Nonlinear Receding
Horizon Control (Ohtsuka (2000)). The simplified, analyt-
ical model is written in Mathematica R© and all derivatives
are automatically calculated using symbolic mathematics
and saved as C code. The model is discretized using 10
points. As a consequence, 10 states and co-states are inte-
grated over the control horizon with a time step ∆tmax,o =

Fig. 5. Simulated performance of the NMPC controller.

5.54 s calculated as limit for Euler method convergence,
based on eigenvalue analysis of the HB dynamics.

The simulation is implemented in MATLAB R© . The link
to the C code of the controller is established through MEX
files. A full, precise model of two interconnected SCs is
used to represent the plant. This full model includes the
dynamics of He II accumulation in the BHX, uses higher
discretization number of 25 points per SC and allows
simulation of heat load perturbation effects.

The C/GMRES tracks the optimal trajectory, which must
be initialized at the start of the simulation. The initial tra-
jectory is optimized over a reduced number of parameters,
using constant inputs trajectory over shortened control
horizon length Tmin(t) = 0. After the initialization, the
control horizon is subdivided into N = 10 intervals, and
its length is gradually increased over the simulation to its
final value limt→∞ T (t) = 30 min, see the subplot T (t) in
Fig. 5. The control input is recalculated every 30 seconds of
simulated time. This time interval is a crucial C/GMRES
parameter, being the integration time step of the input
trajectory, it influences the dynamics of the residuum of
the optimality condition F . Moreover it has an impact on
the disturbance rejection capability.

The NMPC performance is simulated in the presence of
varying heat loads on the HB and saturation temperature
at the BHX outlet (a function of pressure), see Fig.
5. These are unmeasured perturbations and need to be
estimated. However, in the simulation, the values are



supplied directly to the controller, skipping the estimation.
At low saturation temperature in the BHX, during first
7 h of the simulation, the NMPC decreases the steady
state maximal temperature of one cell as the heat load
increases. This compensation of the changing temperature
gradient in the other cell reduces the heat transfer between
the SCs and is a key to equal distribution of coolant
mass flow rates between SCs. In contrast, the PI controller
stabilizes the maximal temperature of each SC at the same
level, resulting in strong heat transfer between them and
vanishing coolant mass flow rate in one of the cells, see Fig.
2. Comparing to previous study (Noga et al. (2010)), the
maximal positive temperature offset has been significantly
reduced by the introduction of the steady state input u0
into the performance index. As the saturation temperature
is increased suddenly to exceed the setpoint in the second
part of the simulation, initially it exceeds the magnet
temperatures and no cooling power is available, thus
helium introduced in the BHX would first accumulate
in the BHX and then in the PS. The reaction of the
NMPC is instantaneous and correct: both valves are closed
until the magnet temperature rises to a level above the
saturation. Then the NMPC stabilizes the temperature
at the minimal possible level, adjusted to changing heat
loads, without provoking BHX overflow. The steady state
maximal magnet temperature is significantly lower than
in the case of PI control and similar to that of LQ, where
the overflow is avoided by adjusting the setpoint using
the fixed safety margin calculated based on worst case
scenario. During the whole simulation the residuum of the
optimality condition quickly converges back to zero after
perturbations are introduced.

The important feature of the C/GMRES method is low
computational cost. The optimization problem with with
two constraints (mc = 2), two inputs and two dummy
inputs (mu = 4), has N(mu + mc) = 10(4 + 2) = 60
free variables and is solved in less than 0.6 s on a personal
computer with 2.4 GHz CPU. Given that the optimization
is repeated every 30 seconds, this is 30/0.6 = 50 times
smaller than time available for calculation, enabling fur-
ther extensions of the NMPC.

4. CONCLUSIONS

NMPC has been designed to stabilize the maximal tem-
perature of LHC superconducting magnets over two in-
terconnected SCs. The controller has been implemented
based on the AutoGenU, with derivatives calculated using
symbolic mathematics. In simulation, at saturation tem-
peratures much lower than the magnets temperatures, the
NMPC stabilizes the maximal temperature of each SC’s
at different levels enabling equal distribution of cooling
power between them. At this conditions, the NMPC per-
formance is superior to that of PI and LQ controllers. At
higher saturation temperatures, the NMPC performance
is comparable with that of LQ. At this conditions, both
controllers are able to stabilize the magnet temperatures
much closer to the saturation temperature then the PI,
respecting the PS overflow constraint.

Very low computational cost of C/GMRES makes the real
time application feasible and enables NMPC extension to
whole LHC sector under constraints imposed by the com-
pressor unit. Other possible further developments include:

development of state and perturbations estimation and
consideration of valve finite rangeability. The controller
has been integrated into the LHC cryogenics control sys-
tem in a test mode and experimental validation is ongoing.
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